The Classifying Space of a Topological 2-Group
نویسندگان
چکیده
Categorifying the concept of topological group, one obtains the notion of a ‘topological 2-group’. This in turn allows a theory of ‘principal 2-bundles’ generalizing the usual theory of principal bundles. It is well-known that under mild conditions on a topological group G and a space M , principal G-bundles over M are classified by either the Čech cohomology Ȟ(M, G) or the set of homotopy classes [M, BG], where BG is the classifying space of G. Here we review work by Bartels, Jurčo, Baas–Bökstedt–Kro, and others generalizing this result to topological 2-groups and even topological 2-categories. We explain various viewpoints on topological 2-groups and the Čech cohomology Ȟ(M,G) with coefficients in a topological 2-group G, also known as ‘nonabelian cohomology’. Then we give an elementary proof that under mild conditions on M and G there is a bijection Ȟ(M,G) ∼= [M, B|G|] where B|G| is the classifying space of the geometric realization of the nerve of G. Applying this result to the ‘string 2-group’ String(G) of a simply-connected compact simple Lie group G, it follows that principal String(G)-2-bundles have rational characteristic classes coming from elements of H(BG,Q)/〈c〉, where c is any generator of H(BG,Q).
منابع مشابه
On Generalized Injective Spaces in Generalized Topologies
In this paper, we first present a new type of the concept of open sets by expressing some properties of arbitrary mappings on a power set. With the generalization of the closure spaces in categorical topology, we introduce the generalized topological spaces and the concept of generalized continuity and become familiar with weak and strong structures for generalized topological spaces. Then, int...
متن کاملSome results of semilocally simply connected property
If we consider some special conditions, we can assume fundamental group of a topological space as a new topological space. In this paper, we will present a number of theorems in topological fundamental group related to semilocally simply connected property for a topological space.
متن کاملSome Characterizations of Hopf Group on Fuzzy Topological Spaces
In this paper, some fundamental concepts are given relating to fuzzytopological spaces. Then it is shown that there is a contravariant functorfrom the category of the pointed fuzzy topological spaces to the category ofgroups and homomorphisms. Also the fuzzy topological spaces which are Hopfspaces are investigated and it is shown that a pointed fuzzy toplogicalspace having the same homotopy typ...
متن کاملFirst non-abelian cohomology of topological groups II
In this paper we introduce a new definition of the first non-abelian cohomology of topological groups. We relate the cohomology of a normal subgroup $N$ of a topological group $G$ and the quotient $G/N$ to the cohomology of $G$. We get the inflation-restriction exact sequence. Also, we obtain a seven-term exact cohomology sequence up to dimension 2. We give an interpretation of the first non-a...
متن کاملSEMIGROUP ACTIONS , WEAK ALMOST PERIODICITY, AND INVARIANT MEANS
Let S be a topological semigroup acting on a topological space X. We develop the theory of (weakly) almost periodic functions on X, with respect to S, and form the (weakly) almost periodic compactifications of X and S, with respect to each other. We then consider the notion of an action of Son a Banach space, and on its dual, and after defining S-invariant means for such a space, we give a...
متن کامل